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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENTS

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain

feet 0.3048 metres

inches 2.54 centimetres

pounds (force) 4.448222 newtons

pounds (force) per 6.894757 kilopascals
square inch

square inches 6.4516 square centimetres
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PROBABILISTIC AND RELIABILITY ANALYSIS OF THE CALIFORNIA BEARING

RATIO (CBR) DESIGN METHOD FOR FLEXIBLE AIRFIELD PAVEMENTS

PART I: INTRODUCTION

Background

1. The design of flexible airfield pavements in the US Army Corps of

Engineers is based on two methods: (a) the California Bearing Ratio (CBR)

equation which is empirical in nature and yields a design thickness for a

given design condition, and (b) the multilayered elastic system which is an-

alytical in nature and yields stresses, strains, and deflections in the pave-

ment system for a particular loading condition and pavement geometry which in

turn are compared to established failure criteria to determine the performance

- of the given pavement. Both of the design method approaches are determin-

"t istic, i.e., a unique pavement system is designed for the unique set of input

variables. For instance in the CBR method, a given pavement thickness is

determined from given values of subgrade CBR , gear load and configuration,

tire contact area, and design coverage level. The effect of material vari-

ability on pavement performance is considered in the designer's selection of

the subgrade CBR value, and the design safety factor is inherent in the con-

struction specifications such as compaction requirements. However, a quanti-

fication of these effects can be accomplished by using the probabilistic

approach, and the design procedures can be improved by showing the partial

effect of each design parameter.

Purpose and Scope Oft

2. The purpose of this study is to investigate the partial effect of

the variability of design parameter in the CBR equation on pavement perfor-

mance. The effects of each parameter are to be quantitatively evaluated on A

• " the final design. The final design will be expressed in terms of probability .t.

ft and reliability, stressing the crucial parameters which should be tightly con-

trolled in the construction phases, and/or the crucial loading parameters

.~ft 4
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dictated by the intended use of the pavement.

3. The methodologies used in the probabilistic analysis of the CBR

equation are the Taylor series expansion and the Rosenblueth method. Computer

programs were developed for both methods and example pavements were analyzed.

Procedures are presented to determine the reliability of pavement as a func-

tion of variabilities of design parameters.
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PART II: PROBABILISTIC APPROACH

General

4. The original and the new CBR equation for flexible airfield pave-

ments are shown below as Equations 1 and 2, respectively.

P A
V 8.1 CBR - (1)

t : -A[O.O481 - 1.1562 (log CBR A)

0.64 14  lgCBR -A)
2  043lgCBR A\~I (2)(lo- 0.473 (logCB

where

t = pavement thickness

A tire contact area

CBR = California Bearing Ratio of the subgrade soil

P = single-wheel load (or the equivalent single-wheel load (ESWL)
in the case of the multiple-wheel loads)

= a traffic factor equal to or less than one (see Figure 1)

Equation 1 was formulated in the 1950's (Fergus 1950, US Army Waterways Exper-

iment Station 1951, and Turnbull and Ahlvin 1957), and Equation 2 is the new

form based on more test data formulated in the early 1970's (Hammitt, et al.

1971).

5. Since Equations 1 and 2 provide the unique flexible pavement thick-

ness t , for unique values of load P , subgrade CBR , and tire contact area

A , they are completely determined or DETERMINISTIC. However, no direct con-

sideration and evaluation in these equations are made for the effect of the

parameter variabilities on the design. Since the subgrade soil is not uniform

under an airfield and the magnitude of one aircraft loading, a3 well as the

tire contact area, is different from the others, the natural variation of each

design parameter will have certain impact on the performance of the finished

pavement and the actual magnitude of the variation of each parameter will also

differ among the design parameters. For instance, the variation of the sub-

grade soil is greater than that of the pavement thickness as the latter is

:..A. 6
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easier to control during construction. Also, the relative effects of these

variations on pavement performance could be vastly different; the effect of

thickness variations may be much greater than tire contact area variations.

The deterministic design approach does not directly take care of these vari-

abilities and thus does not provide information for decision making in varying

situations of design and construction. As an inherent part of the system,

parameter variabilities should be included in the design procedure in a quan-

titative manner to provide a more rational tool for the designer.

6. The methods to calculate the expected value and variance of a func-

tion (as the a function in Equation 1) using the Taylor series expansion

(Benjamin and Cornell 1970) and the Rosenblueth procedure (1975), are pre-

sented below, followed by the procedure to compute the reliability of the

design.

Taylor Series Expansion

7. The Taylor formula for the expansion of a function f(x) , with N

continous derivatives, about the mean v is

f(x) = f(p) + f'(v)(x -) + f ( - 2

2

+ ... higher order terms + remainder (3)

Since the expected value of (x - v) is zero and the expected value of

(x p) 2 is the variance* of x i.e., E(x -) = 0 and E(x

: the expected value of f(x) becomes
X

E[f(x)] f(u) + 0 + 2 () . .

f,, (v(4i)2

E[f(x)] f(ji) + 1 f"(p) c2 (4)
2 x

The expected value of f2(x) is expressed as

* Definitions of expectation and variance are presented in Appendix A.

7



22 1 [f2 " 1'2E[f 2 (x)] - f2(W) + 2 (1 )] °x

f 2 (U) + 1 [2f(i1)f'(1,)1'0
2

f2(2) + 15)

= [2f'(P)f'( ) + 2f(l1)f"(w))1a
2

= f2(W ) + f'(W)] 2 + f(UI) f"() a2
x

The variance of a variable x is derived as follows:

2 V[x] E[(x - ) 2 ] E[x 2 - 2px + 1
x

= E[xl - 2p E[x] + E[P2

as E[x] w1 and E[ 2 = 2 , as p is a constant,

O = v[x= E[x2  - 2 + 2 E[x - [E(x) (6)

In other words, the variance is said to be the mean square minus the square

mean. The variance of f(x) can be written as

V[fx) Elf 2 (x)] - E[f(x)] (7)

Then substituting Equations 4 and 5 into Equation 7 results in

V[f(x)l f2(p) + [f'(w)] 2 + f(11 ) f"(l) 2
x

2( 22 1 f,,(2 4,.,..f - (W) + fNO f"(P) ayx + ) x (8)

', l . f ( ,) 12 0 2 1 I [ f P 12 4V~f(x)] :f( ) o 0- - ,f",11), 0x 4x M

8. In Equations 4 and 8, if the random variables can be assumed nor-

mally distributed, the second-order terms may be neglected. For multivariate

situations, the first-order approximation to the expectation and the variance

of f(x) is expressed by Benjamin and Cornell (1970) as

8%..-. . - ' A .



E[f(x)J : f(w) (9)

V[f(x)J Coy (x1, x (10)
i=1 all xi  all xi  (i

where Coy (xy xj) is the covariance of variable xi and xj Note that

if the xi are uncorrelated, Equation 10 is simply

V: ax) V(xi) (11)
I~l all xi

Rosenblueth Method

9. Equations 4 and 8 are obtained from the Taylor expansion of the

function about the expectations of the random variables. This method requires

the existence and continuity of the first and second derivatives of the func-

tion. Rosenblueth (1975) overcame these difficulties through use of point

estimates of the function. The expressions for the expected value are:

E[ I C N + CN for one variable (12)

E[ N N + a + a + a for two variables (13)
22

E[ 2 +++ + - a +--+ +a ++ +a _

., N N (14)
0+ + C for three variables

9
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EaJ =2 ( + + ++N + + + ++N+ +

N N N N N
+ +-+- +--+- a -+ a -++-

N N N N (

+a +a + a +a L
-+-+ - +-- .. -- ++ 4-

N N \ (5

+ N + a for four variables

E[ON] a N + ... + a N for M variables (16)

M M

Note that the number of total terms to calculate the expected value of a func-

tion y which has M variables is 2M  and N have a value of either 1 or 2

as shown in Equations 6 and 7.

10. To illustrate the use of the Rosenblueth method, the expected value

of the a factor in Equation 2 is calculated. Since Equation 2 has four

independent parameters, t , CBR , A , and P , Equation 15 is used to

determine the expected value of the a factor. Assuming that the standard

deviations of the parameters are at I aCBR I aA and ap and that the

parameters are arranged in the order of t , CBR , A , and P (i.e., the

order of the symbols +++.. , ++- , ... , etc.), the terms in Equation 15 can

be written as

N ( t - o at-)1 (CB . CBR)(A

V - 0 - I (P O rP)

- [ (CBR Ocall)(A * o
A
) 2 (CBR * OCBR)A * o)]

(P* - p (P + OF) j

N_ (t - 0.0481 - 1.1562 (CB P C (A O)

- (CBR + OcBfl(A + GA) 2 _ (CBR * OCBR)(A -°A)

(t [O) 0.0481 - 1.1562 [og (COS - CBR)(A OA0)]

- oI - o --- Ao 7 I- I -

0.614 [log (CBR - 0CBR)(A - 05)]2 0.473 [og (CBR c )(A - 0A) ] 3(1-oe (P.-oe) - 7 o (P - O) ( 7

10



11. If the mean values for parameters t , CBR , A , and P and

their standard deviations t PA , and ap are known, the expected

value of a can be estimated from Equations 15 and 17, and the variance of

a is computed by Equation 7.

Reliability Analysis

12. As soon as the expected value and the variance of a function (such
as the a factor in Equation 2 representing the design performance level) are

determined, the reliability level of the function can be computed. Reliabil-

ity is defined to be the probability that the pavement system will perform its

intended function over its design life and under the conditions encountered

during operation (Darter and Hudson 1973). The procedure to follow is ex-

plained below. w

13. The relationship between the load repetition factor a and the

aircraft passes is shown in Figure 1 (Hammitt et al. 1971). The problem

existing at this stage is to determine the reliability level of the available

design curves and the design equations. If the design curve is drawn through :
test data points at failure with no consideration of the safety factor (i.e.,

50 percent of the data points above the curve and the other 50 percent below

the curve), the reliability of such a design is 0.5. In other words, the

probability of success of this design is only 50 percent. However, if a cer-

tain amount of safety factor has been considered in the design curves or the

design equation, the reliability of the design should be greater than 0.5. In

a recent study (Potter 1985), reliability of the CBR equation was determined

to be 0.5 without including the effects of conservative estimates for the

parameters of material strength, traffic load, and traffic intensity. Assumed

reliability values are used in the illustrated computations.

14. With the load repetition factor a assumed normally distributed, J1%

the number of aircraft passes corresponding to a[i + C - CV(a)] can be de-

termined from Figure 1, and the probability of a < aI1 + C • CV(a)] is taken

from the normal distribution. CV(a) is the coefficient of variation of a

which is the ratio of the standard deviation of a to a mean of a , (i.e.,

7 /a), and C is a selected number varying from -3 to +3. C values less

than -3 and greater than +3 are not necessary because the area under a normal

distribution curve beyond -3 and +3 standard deviations are negligible. The

11
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computations of the reliabilities, a factors, and aircraft passes for given

airfield pavements are illustrated in the following example.

Assumed conditions

15. The mean values of the single-wheel load P (or the ESWL), sub-

grade CBR , and tire contact area A are assumed to be 30,000 lb,* 4, and

285 sq in., respectively. A series of mean pavement thickness t = 10, 12,

15, 17.5, 20, 22.5, 25 in. are used. The coefficients of variation of the

four parameters are all assumed to be 10 percent. For instance, if the mean

wheel load is 30,000 lb, the standard deviation of the wheel load will be

3,000 Ib, i.e., 68.3 percent of the time the wheel load would lie between

27,000 to 33,000 lb.

Computations

16. Computer programs were prepared for the calculations of expected

values and variances derived from the Taylor series expansion and Rosenblueth

method. Unless otherwise noted, results presented in this report are computed

using the Taylor series expansion method.

17. For a pavement thickness t = 20 in., the computed (mean) a

value using Equation 2 is 0.72, and the variance of the a value (i.e., V(c))Ai
computed using Equations 6 and 15 is 0.0095739. The standard deviation of

the a value (a) is "0.0095739 = 0.09785 (or 0.1). Table 1 shows the

computed passes for an assumed reliability values of 0.7 and 0.5 of the CBR

equation.

18. The reliabilities are calculated from the normal distribution and

the aircraft passes are obtained from the relationships in Figure 1 for the

single-wheel load case. Similar computations can also be made for other pave-

ment thicknesses (i.e., t = 10, 12, 15, I .5, 20, 22.5, 25 in.). The results

shown in Table 1 and those computed for other thicknesses can be plotted in

Figure 2 and Figure 3, for initial reliabilities of 0.7 and 0.5, respec-

tively, showing the relationships between reliability levels and aircraft

passes for varying pavement thicknesses. Note that the procedures presented

in this report are applicable for any reliability value of the CBR equation.

A comparison of Figures 2 and 3 reveals that the patterns of the curves in

each are similar. The significance of the curves will be discussed in

Part III.

* A table of factors for converting non-SI units of measurement to SI

(metric) units is presented on page 3.
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PART III: ANALYSIS OF THE CBR EQUATION

Development of the CBR Equation

19. Formulation of the CBR equation (Turnbull and Ahlvin 1957) was

based on results of numerous full-scale accelerated traffic tests, which

represented the reliable data and extensive observations accumulated by the

Corps of Engineers. The theory of elasticity was also used to formulate the

equation. It was found from the theory of elasticity that for a given in-

tensity of surface load the stresses beneath total loads of different magni-

tudes would be equal at homologous points. It was assumed that the needed

strength and therefore the required CBR would be the same at depths at which

the stresses are identical. Thus, for a given CBR and intensity of load, the

depth of cover or thickness of protective layer for any magnitude of load must

be such that the ratio of the thickness t , to the radius of contact area

r , is a constant, C , or

t (18)r=

By using the relation P pwr , where P and p are load and load inten-

sity, respectively, the following equation resulted:

t = KV%-P- (19)

where K = C/lVp- is a constant dependent on the CBR.

20. Equation 19 relates the total load P to the pavement thickness

t . The tire contact pressure p was not considered at the time. However,

it was soon realized that Equation 19 was good only for tire pressure around

or less than 100 psi. With the knowledge that an increase in tire pressure

would require an increase in protective thickness (depth) such that the theo-

retical deflections would be equal, CBR relations were developed for higher

tire pressures. The theoretical equation to compute the deflections and the

resulted relation are given as

w 1.5 r (20)
m r 2  t 2

16
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~and
, : 2  1

an p (21)

where w and Em are deflection and modulus of elasticity of the soil and

D and K are constants.

21. Values for the constant K were developed from single-wheel CBR

curves for design (or evaluation) of flexible airfield pavement for capacity

operation (5,000 coverages). A relationship was found between D and the

CBR ; that is, the product D x CBR was substantially constant for CBR val-

ues below about 10 to 12 and the value was about equal to 1/8.1. Based on

this relation and Equation 21, the CBR equation (Equation 1) resulted.

22. It should be noted that in the CBR equation the required thickness

is proportional to the parameter P/CBR , i.e., if the load is increased, the

4 same thickness of pavement can be used as long as the subgrade CBR value is

increased by the same proportion. Thus, Equations 1 and 2 can be written in

the following forms:

P A (22)

8.1 CBR -7

A/IVT. ro. 1.1562 (log CBR . A)

V2

• ".,,

CB ACR 3]
0.41 lo- 0.473 (log p (23) ' :

23. For the discussion in this paragraph, Equation 22 is used because .

of its simplicity. Tne equation shows that the performance factor of the
designed pavement a is proportional to the selected thickness of the pave-

ment t and to the quantities CBR/P and A . The performance of a given

pavement is improved with an increasing CBR value of the subgrade and the tire

contact area A and is worsened as the aircraft load is increased. Also, as

shown by Equation 22, if the load P is increased, the performance a can be

kept unchanged if the subgrade CBR is also increased the same proportion;

i.e., if the subgrade CBR is doubled, the load could be doubled. For ex-

ample, the predicted performance is about 91 passes (Figure 1) for a 20-in.

pavement and a 4-CBR subgrade subjected to a 30,000-lb wheel load. If

another airfield runway designed for a 60,000-lb wheel load is to be built for

17
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the same subgrade soil and if the same pavement thickness is used, then the

same performance level can be expected if the subgrade CBR value is increased

from 4 to 8 through stabilization. Although this conclusion is derived solely

from the CBR equation, it is generally true based on actual field experiences.

Sensitivity Analysis

24. A sensitivity analysis was made for the CBR Equation 23 to examine

the effect of variations of each parameter (i.e., t , P , CBR , and A) on

pavement performance (a factor ). In the analysis, the value of one param-

eter was varied each time while the other parameters were kept constant and

values of the a factor were computed. To vary the value of each parameter,

a multiplying factor ranging from 0.5 to 1.5 was used for each one. The base

values for the parameters t , P , CBR , and A were 20-in., 30,000 Ib, 4,

and 285 sq in., respectively. Table 2 shows the different a values computed

from Equation 23 for a series of wheel loads P . Various new P values re-

sulted from the use of multiplying factors.

25. The relationship between ai factor and the multiplying factor
shown in Table 2 for the load P is plotted in Figure 4, together with other

similar relationships computed for thickness t , subgrade CBR , and area

A . The dotted line shown in the figure is horizontal for an a factor of

0.716, which is the a factor with the multiplying factor being equal to 1.0.

All four curves plotted cross this line at the point where the multiplying

factor has a value of 1.0. The slope of the curve indicates the degree of

*sensitivity of the performance factor a to the particular design parameter.

The pavement performance (a factor) is most sensitive to the variation of

pavement thickness t and is least sensitive to the tire contact area A.

The effects of variations of the load P and the subgrade CBR on pavement

performance are nearly the same, except that the effects are in the opposite

direction. The reason that pavement performance is equally sensitive to the

variations of load P and subgrade CBR is manifested in CBR Equation 1 in

which the required pavement thickness t is proportional to the parameter

P/CBR.I

4. 18
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EACH VARIABLE t, ESWL, CBR, AND A

Figure 4. Sensitivity analysis of the CBR equation

Probabilistic Approach

26. Equation 8 shows the expression for variance of a function f(x) .

The variance for the performance function a in the CBR equation is given in

Equation B5 (Appendix B). By neglecting the nonlinear terms* and using the

relations V(a) = a CV 2 (a) and a = t/D , (Equation B3 in Appen-

dix B), the following equation can be written from Equation B5.

2 2 2 2 2
CV (a) = W CV (t) + WACV (A) + WcBRCV (CBR) + W CV (p) (24)

where tP

CV2( ),CV 2(t),CV2 (A) = the square of the coefficient of variation
CV2 CBR),CV2(p) of a , t , A , CBR , and P , respectively.

* The calculated values of the nonlinear terms are insignificant (see para-

graph 42.
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27. In Equation 2L4, the coefficient of variation of performance factor

,and hence the reliability of the design, is expressed as a function of the
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coefficient of variation of the design parameters. Wt , WA , WCBR , and W

are weighting factors which affect each of the corresponding design param-

eters. The factors are dependent upon the parameters P , A , and CBR but

not upon t . A study of the weighting factors gives an insight into the

effect of the design parameters.

28. Table 3 presents an evaluation of the weighting factors for a range

of different values of variable A , CBR , and P . As shown, the weighting

factor of A (tire contact area) is very small, and thus the effect of its

variability on the reliability of the design is reduced. Since the weighting

.' .~factor of t (the pavement thickness) is the largest and is always equal to

1, the effect of its thickness variability on performance variability is am-

plified. The fact that the weighting factors of wheel load P and subgrade

CBR are equal indicates that the effect of their variabilities on pavement

performance are equal. This conclusion is reasonable because in the CBR

equation the performance factor a is proportional to the parameter CBR/P

i.e., when one variable is changed, the performance can be kept unchanged if

4 the other variable is changed in proportion. The conclusions derived from the

-. weighting factors are consistent with those derived from the sensitivity
analysis (paragraphs 24 and 25).

29. The pavements shown in Table 3 consist of values that are typical

* values in pavement design; i.e., for a 20-in, pavement built on a 4-CBR sub-

grade soil under a 30,000-lb single-wheel load, the design aircraft pass com-

puted by the CBR equation is 800. Computations were made for extreme cases

(underdesigned and overdesigned pavements) to check if the weighting factors

would deviate from the values listed in Table 3; the results are presented in

Table 4. For the case of underdesigning the pavement in which very low

V. subgrade CBR and very heavy wheel load are used, the computed weighting

factors in Table 4 are generally very close to those in Table 3, but for the

case of overdesigning in which very high subgrade CBR and very light wheel

load Are used, the weighting factors of A , CBR , and P become very large,

larger than that of t , which is always equal to 1. Fortunately, in the

latter case when the subgrade is very strong and the load is very light, the

design aircraft passes of the pavement will be very high, and the effect of

5 design parameter variability on pavement performance in this case will not be

significant, at least not as significant as at lower pass levels.

30. As shown in Table 3 and 4, the weighting factor of thickness t is

5-2
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always equal to 1. If it is assumed that there is no variation in design pa-

rameters A , CBR , and P , Equation 24 can be written as

CV(a) CV(t) (25)

>- Since CV(Ma) a/a , where a is the standard deviation of the performance

factor a and a is the mean value of a , the following relation can be

derived:

a aY

or a - CV(a) - CV(t)

a -t for CV CV CV = 0 (26)
CV(t) A CBR t

,+-,'. where t is the mean pavement thickness. Equation 26 shows that for a given r

pavement in which the thickness t is selected and thus the performance fac-

tor a is computed, if there is no variation in other design parameters

. (i.e., P , CBR , and A), the standard deviation of a , i.e., a , is di-

rectly proportional to the standard deviation of t , i.e., a

31. Equation similar to Equation 26 can also be written for other

conditions:

"- A
a- for = CV 0 (27)

""A CV(A) VWA (A

aL : = for CV :CV :CV 0 (28

CV(CBR) \fCBR 0 CB t A P

aaa C K for CVt CVA CVCBR 0 (29)

CV(P

where WA , WCBR and Wp are weighting factors shown in Equation 24.

As observed in Equations 27 through 29, the relationship between the standard

deviations of a , i.e., i , and the standard deviation of other design pa-

rameters (i.e., op , 0CBR and ) s not as simple as that between o

-and .t Also these equations show that the weighting Cactors WA , WCBH

and Wp are independent upon the thickness t

32. in the discussion of rel i-ib i ['y ina Ilv :-s in Part 1 , a procedur e

2?



was given to evaluate the reliability level of the design. The curves plotted

for a particular design in Figures 2 and 3 were based on results shown in Ta-

ble 1 for a thickness t = 20 in., as well as results computed for many other

thicknesses. The coefficients of variation of design parameters P , A

CBR , and t were assumed to be 0.1. Figures 2 and 3 also show that for a

given pavement thickness, the reliability of the design can be increased (or

decreased) when the design airfield performance (aircraft passes) is decreased

(or increased). At a given design aircraft pass level, the reliability of the

design can be increased (or decreased) by increasing (or decreasing) the pave-

ment thickness. For instance, for a 20-in. pavement, the predicted perform-

ance is 800 passes having an initial reliability level of 0.7 (which is as-

sumed to be inherent in the CBR equation in this particular example). The

reliability is reduced "o 0.4 if the same pavement is designed to last

V. 2,800 passes, but is increased to 0.8 if this pavement is designed to last

only 620 passes. Another interpretation is that for a 20-in. pavement de-

signed by the CBR equation, the chance of success that the pavement will last

800 passes is 70 percent (as the assumed reliability of the equation); the

chance is reduced to 60 percent that the pavement will last 2,800 passes; and

the chance is increased to 80 percent that the pavement will last 620 passes.

Similar discussions may be presented for an assumed initial reliability value

of 0.5 for the CBR equation as shown in Figure 3.

33. The relationships shown in Figure 2 are for the condition that the

coefficients of variation for all of the four parameters (P , t , CBR , and

A) are assumed to be 0.1. Computations were also made for other values of co-

efficient of variation, and the results are plotted in Figure 5 for the case

of pavement thickness t 20 in. For (very small) coefficients of variation

, of 0.01 (i.e., nearly no variations in design parameters and material vari-

abilities), the reliability versus passes curve is almost a vertical line, in-

* dicating that the pavement performance can be predicted with very small chance

of error. As the coefficients of variation are increased (i.e., variations in

design parameters and material variabilities are larger), the reliability

versus passes curve becomes flatter, suggesting that it is more difficult to

accurately predict the pavement performance as the magnitude of error involved

becomes larger.

34. The results presented in Figures 2 and 5 assume that all of the

four design parameters have the same coefficient of variation. To study the

23 Al
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effect of each individual parameter, computations were made to vary only one

parameter each time while the other three parameters were kept constant (i.e.,

the variations of the other three parameters were zero); the results are

plotted in Figure 6 for an initial reliability value of 0.7. This figure

shows that the pavement performance (aircraft passes) is least sensitive to

the variation of the tire contact area A and is most sensitive to the vari-

ation of the pavement thickness t . The magnitude of the effects of the

variations of the load P and the subgrade CBR on the pavement performance

are practically the same. The conclusions derived from Figure 6 using the

probabilistic approach are the same as those derived from the sensitivity

analysis shown in Figure 4.

35. The significance of the results presented in Figure 6 may also be

explained from another viewpoint by using the values listed in Table 5. Ta-

ble 5 shows the ranges of wheel passes within +1 and -1 standard deviation of

the a factor for four different cases. In each case, the coefficient of

variation of one parameter is equal to 0.1 and that of the other three

parameters are set to zero. The a factor computed from the CBR equation for

the particular pavement is equal to 0.72.

36. Since the area within +1 and -1 standard deviation under a normal

distribution curve is 0.68, the significance of the values shown in Table 5

can be explained in the following way. When only the variation of the tire

contact area is accounted for (CVA = 0.1), there is a 68 percent of chance*

that the predicted performance falls within the range between 841 to

977 passes. When only the variation of the wheel load P is accounted for

(CVp = 0.1) and for the same 68 percent of chance, the predicted performance

will fall within a range from 515 to 1,596 passes that indicates a larger

variation. The same is true for the subgrade CBR variation (CVp = 0.1). When

only the variation of thickness t is accounted for (CVt = 0.1), the range

can be increased to between 339 to 2,429 passes for the same percent of

chance. A larger range of predicted pavement performance indicates that the

design has a greater amount of uncertainty.

Significance of the Analysis

37. The results presented in Figures 4 and 6 indicate that variations

' Sixty-eight percent is the percent of area covered within plus and minus
one standard deviation under a normal distribution curve.
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of pavement thickness t have the largest effect on pavement performance,

followed by the load P and subgrade CBR , and then the tire contact area

A with the least effect. To control (or to limit the variation of) pavement

performance, efforts should be made to control the pavement thickness and sub-

grade CBR during construction. Fortunately, it was found that the thickness

variations in actual field constructions are not very large. Sherman (1971)

measured pavement thicknesses in highway construction in California from 1962

to 1969. Table 6 presents the thickness variations for various pavement ma-

terials. Approximate standard errors obtained from the table by pooling the

mean squares are shown below (Darter and Hudson 1973):

Material Standard Error, in. Number of Tests

Asphalt concrete 0.41 9,775

Cement-treated base 0.68 9,749

Aggregate base 0.79 8,053

Aggregate subbase 1.25 10,578

The average coefficients of variation for these pavement component layers are

generally near or less than 10 percent. Nevertheless, more effort should be

expected to reduce pavement thickness variation during construction.

38. Although the effect of the variation of subgrade CBR on pavement

performance is not as large as that of pavement thickness, the actual van-

ation of subgrade CBR in the field is known to be very large. The coeffi-

cient of variation may be expected to be 50 percent or more. More efficient

construction methods and equipments should be used, and strict compaction and

quality controls should be exercised in construction to reduce subgrade CBR

variations, or alternatively reduce the mean CBR value.

39. The control of load variation is beyond the jurisdiction of pave-

ment engineers. Since the variation of aircraft load has a large effect on

v,. pavement performance, the airfield operators should be informed and advised to

limit aircraft overload cases.

40. Figures 4 and 6 show that the variation of aircraft tire contact

area has the least effect on pavement performance. It should be pointed out

that for a constant gross load P , the tire contact area A is controlled by

the tire contact pressure p , as pA = P . As long as the aircraft load is

under control, variations of tire contact area or tire inflation pressure have

no significant effect on pavement performance.

V. 27 I



Comparison of Results Computed by the Taylor Series Expansion

and the Rosenblueth Method

41. The results presented in Figures 2, 5, and 6 were computed using

Equations 4 and 8 (Taylor series expansion). The calculated values of the
2

nonlinear terms in the equations, i.e., (1/2)f"(p)a in Equation 4 and

(1/4)[1" ]o'  x in Equation 8, proved to be very insignificant as compared

with the calculated expected values (Equation 4) and variance (Equation 5).

In other words, the nonlinear terms in the Taylor series expansion can

actually be neglected.

42. Computations were made using the Rosenblueth method, and the results

were compared with those computed using the Taylor series expansion. The

comparison revealed that the differences computed using the two methods were

small, the average difference in computed standard deviations was about 5

percent, but the difference became larger as the coefficients of variation of

the design parameters increased. Table 7 shows the comparison between the two

methods for a special design condition.

43. Since large differences in computed values are observed at larger

coefficients of variation between the two methods, the question arises as

which method yields better results at larger coefficients of variation. Since

both methods are approximate in nature and since closed form solutions, with

iich solutions of approximate methods can be compared, are not available,

conclusions cannot be drawn as to which method yields better results at

greater variations of design parameters. Fortunately, Table 7 shows that dif-

ferences computed from the two methods become large only when coefficients of

variation of the parameters are greater than 0.3.
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PART IV: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

44. Based on results of the analysis of the CBR equation, the following .2-

conclusions were derived:

a. Differences in computed results between the Taylor series ex-,'
pansion and the Rosenblueth method are small. Differences
become larger when the variations of design parameters become
very large.

b. Prediction of pavement performance is most influenced by the
variations of pavement thickness t and is least influenced by
the variations of tire contact area A . The effects of varia-
tions of wheel load P and subgrade CBR are identical. The
weighting factors for parameters t , CBR , P , and A ,in
general cases, are approximately 1, 0.34, 0.34, and 0.01 -"

(Table 3), respectively.

Recommendations

45. To further improve the reliability of the design procedures, it is

recommended that:

a. Strict quality control should be exercised during construction
to reduce variations of pavement thickness and subgrade CBR

b. The tire contact area can be discarded from the design param-
eters in the analysis of flexible pavements.
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Table 1

Computed Passes for Reliability Values

of 0.5 and 0.7 for the CBR Equation

Reliability of the Design
Reliability of CBR Reliability of CBR Passes (from
Equation = 0.5 Equation = 0.7 a Factor Figure 1) .,

0.5 + 0.5 = 1.0 0.7 + 0.5 > 1.0 a - 3a z 0.42 16
a

0.5 + 0.49 = 0.99 0.7 + 0.49 > 1.0 a - 2.5a 0.45 31

0.5 + 0.48* 0.98 0.7 + 0.48* > 1.0 a - 2a 0.52 61

0.5 + 0.43 = 0.93 0.7 + 0.43 > 1.0 a - 1.5a 0.57 121

0.5 + 0.34* 0.84 0.7 + 0.34* > 1.0 a - a a 0.62 237

0.5 + 0.19 0.69 0.7 + 0.19 = 0.89 a - 0. 5 ca 0.67 464

0.5 + 0 = 0.5 0.7 + 0 = 0.70 a = 0.72 910

0.5 - 0.19 = 0.31 0.7 - 0.19 = 0.51 a + 0.5a 0.77 1,782 q<.

0.5 - 0-34* = 0.16 0.7 - 0.34* = 0.36 a + a a 0.82 3,491

0.5 - 0.43 = 0.07 0.7 - 0.43 = 0.27 a + 1. 5 % = 0.87 7,032

0.5 - 0.48* = 0.02 0.7 - 0.48* = 0.22 a + 2o = 0.92 14,635
a

0.5 - 0.49 = 0.01 0.7 - 0.49 = 0.21 a + 2 .5a 0.97 30,456

0.5 - 0.5 0.0 0.7 - 0.5 0.2 a + 3 a 1.02 63,379

9.4

(.9

'C

Note: Pavement thickness t :20 in., load P :30,000 lb, subgrade

CBR = 4 , tire contact area A :285 sq in., and CVp = Cv t = CVcBR :
CVA = 0.1

*0.34 and 0.48 are half of the area within plus and minus one and tt-
standard deviations, respectively, under a normal distribution curve.

Z5



Table 2

New Wheel Loads Used in the Sensitivity Analysis

of CBR Equation

a* Factor Multiplying Factor New P**, lb

1.072 0.5 15,000

0.963 0.6 18,000

0.880 0.7 21,000

0.814 0.8 24,000

0.761 0.9 27,000

0.716 1.0 30,000

0.678 1.1 33,000

0.645 1.2 36,000

0.616 1.3 39,000

0.590 1.4 42,000

0.568 1.5 45,000

Note: Tire contact area A = 285 sq in., subgrade CBR =4 , pavement
thickness t 20 in., and load P = 30,000 lb.

* Computed from Equation 23 based on new P
** Obtained as the product of the multiplying factor and the 30,000 lb.

Table 3

Weighting Factors for Design Parameters,

Pavement Thickness = 20 In.

Pavement Conditions Weighting Factors.LI A  W Wt ,

Case A sq in. CBR P , tb W CB __

1 125 4 30,000 0.00283 0.306 0.306 1

2 285 4 30,000 0.00582 0.332 0.332 1

3 550 4 30,000 0.00768 0.345 0.345 1
I 4 285 2 30,000 0.00335 0.311 0.311 1

5 285 10 30,000 0.00905 0.354 0.354 1

6 285 4 10,000 0.01087 0.365 0.365 1

7 285 4 60,000 0.00335 0.311 0.311 1

O



Table 4

Weighting Factors for Abnormal Designs,

Pavement Thickness = 20 In.

Pavement Conditions Weighting Factors

Case A sq in. CBR P , lb WA WCBR Wp Wt

1* 285 2 60,000 0.00088 0.281 0.281 1

2* 285 1 100,000 0.00087 0.221 0.221 1

3* 125 1 100,000 0.00484 0.185 0.185 1

4** 285 20 15,000 0.30028 1.098 1.098 1

5** 125 40 10,000 1.06520 2.347 2.347 1

Underdesigned pavements.
** Overdesigned pavements.

.' Table 5 ,
Performance Variations as Functions of Variabilities

_ of Input Variables--

. Standard ,
'.-Variabilities Deviation a Values Passes for ,

CV A  CV cBR  CV p CV t  of a , a a a a + a a - 0 a + a

0'i .1 0 0 0 0. 005 0. 71 0. 72 841 977

, 0 0.1 0 0 0.041 0.67 0.76 515 1,596

0 0 0.1 0 0.041 0.67 0.76 515 1,596

0 0 0 0.1I 0.072 0.64 0.79 339 2,429

Note: Load P = 30,000 lb, pavement thickness t :20 in., subgrade ,
CBR = 4, tire contact area A :285 sq in., a 0.72 computed from

the CBR equation.
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Table 6

Thickness Measurement Variations*

Mean Deviation
from Planned Standard Number of

Year Material Thickness, ft Deviation Measurements

1962 Asphalt concrete +0.02 0.03 823
Cement-treated base +0.02 0.06 934
Aggregate base +0.00 0.07 1,149
Aggregate subbase 0.00 0.08 1,037

1963 Asphalt concrete +0.01 0.03 1,327
Cement-treated base +0.02 0.06 1,173
Aggregate base 0.00 0.06 1,310
Aggregate subbase 0.00 0.09 1,183

1964- Asphalt concrete +0.02 0.03 1,760
1965 Cement-treated base +0.02 0.05 2,187

Aggregate base 0.00 0.06 1,285
Aggregate subbase +0.02 0.10 1,922

1966 Asphalt concrete +0.02 0.04 1,569
Cement-treated base 0.00 0.06 1,569
Aggregate base 0.00 0.07 1,272
Aggregate subbase +0.03 0.12 1,833

1967 Asphalt concrete +0.01 0.03 1,838
Cement-treated base 0.00 0.06 1,412
Aggregate base +0.01 0.07 1,134
Aggregate subbase +0.03 0.11 1,887

1968 Asphalt concrete +0.02 0.04 1,135
Cement-treated base +0.01 0.05 1,156
Aggregate base +0.01 0.06 828
Aggregate subbase +0.01 0.10 1,526

1969 Asphalt concrete +0.02 0.04 1,323
Cement-treated base +0.01 0.06 1,318
Aggregate base +0.02 0.07 1,075
Aggregate subbase +0.02 0.11 1,370

..

* From Sherman (1971).

4)del V- k-P
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Table 7

Comparison Between Computed Values of the

Taylor and Rosenblueth Methods '-%

CoefficientS Cmputed Standard
Vaiain Deviation of the DifferenceVrainFactor in ,..]

CV =CV ~CV CV Fatri
T CBR A P Taylor Rosenblueth Percent

0.01 0.00924 0.00980 5.7

0.05 0.04623 0.04892 5.5

0.10 0.09238 0.09784 5.6

0.20 0.18412 0.19777 6.9

0.30 0.27453 0.30450 9.8

0.40 0.36293 0.42470 14.5

0.50 0.44862 0.57005 21.3

..
4

Note: Pavement thickness t = 20 in., subgrade CBR 4 , tire contact
area A 285 sq in. and load P 30,000 lb.



APPENDIX A. EXPECTATION AND VARIANCE OF A
RANDOM VARIABLE*

1. The expectation of a discrete random variable x , denoted by E(x)

or simply x , is defined as

E(x) xif(x.) (Al)
all x.

where x i represents all possible values of the random variable x and

f(xi ) is the probability-distribution (or probability-density) function which

assigns the corresponding probability to each xi

2. The variance of x , denoted by V(x) or , is defined as

2E(x (xi _2x)2f(xi))

L - P X all x. -Af)

the expectation and variance of x can also be defined as the first and

second moments of x as explained below.

3. If x I , x2 , ... , xN are N values of a random variable x , .

the kth moment of x about the origin, E(x k) is defined as

k k k, .". . + x2 +  " "+ XN
E(xk) 1 (A3)

N

The first (k 1) moment, E(x1 ) , is the expected value of x
." ,

'4 z 4. If xI  , x2  , .. , x M  occur with frequencies of fl ,

... fm respectively,

f-xf k k

E(xk) xk i 22 N MM (A4)k N (A

M
., where N f .

==_=1

5. The kth moment about the mean xI or the kth central moment

of a random variable x is defined as

* Readers may gain further information from Harr (1977). References cited in
this Appendix are included in the References at the end of the main text.

Al



of a random variable x is defined as

1 N -k
E - ) x: N (AS)

The second central moment, k = 2 , is the variance of x , V(x) For

M
grouped data with frequencies f t f " f N f

E [x -xj)k] N/+2 X 1  ~ ) (A6)-

A2.

414

.
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APPENDIX B: DERIVATION OF EXPECTED VALUE E(a) AND
VARIANCE V(a) FOR THE CBR EQUATION

A. The modified CBR equation has the form

ICBR -A CBR -At :j -[0.0481 .1562 (log ESWL" .6414 (log ESWL /""
(log -B 0.141 (log

r ..473 5ES /ESWLSWB)

or,
t

a [C1 + C2 log VB + C3 (log VB)2 + C4 (log VB)3] (B2)

where VB = (CBR - A)/ESWL , and cI , 02 , C3 , and c4  = -0.0481

-1.1562, -0.6414, and -0.473, respectively.

B. For the sake of easy presentation and computer practice, Equation B2

can be further written as

t
a = D (B3)

where D : rA [CI + C 2 log VB +C 3 (log VB)
2 + C4 (log VB)3].

C. The equation for solving the expected value E(a) and variance

V(c) shown in Equations 4 and 8 are

E(c) : , , A, ESWL) a ) 2 (84)

all x

V(Q) :Y a 2 (B5)

:!ax I2
i ( xall xi ) all x. )2 (B5)

where

E, CBR, A, ESWL = mean values of the parameters

B1



a(t, CBR, A, ESWL) lgt 3]-

log VB + C (log VB) + C (log VB)

) 22
ax. - x.at1 all xi A

xDi 2 aD.
all x all x.

[ (~ 2 [ ()2
a CBR CBR + ESWL ESWLall xi all xii

2

all x.

D 14 D_ C74

[a()all xJ L [2 all xi]2

+ ~1 a F B EW YE
a 1 4

where

aCBR ,A aESWL standard deviations of the parametersD. The detail of the partial deviatives in Equations B4 and B5 are

expressed as

D l 2a t  (B6)t all x.

B2

• ..'. ~ * * ~ 1 '* *, - , . . -, . -, - i'w,)



i -2

3A A

all ax x

a2) J.: 2C 
C

D [t()] all }2 IrclAcc

C2 + 4C 3C5  C3 + 6C4C5  2
+2 A log VB + 2'J 6CC lgVB (B7)

D 2

>.. _ _ +g (log8)) I
CBR CBR

t [ 2C5SVA 2C3C5V7 lgV (B8)

D --R )CBR

3C4 C 5 A TB- 2 2

CBR lo

2 2.

a ESWL all xi  ESWSL

I--I C2C5 'A 2C 3C5 NA
j I - log VB (B9)

• L ESWL ESWL

i3c,% 4 c) 5 A (l::
- Tlo ESWL

'U ESWL "

B3 "a

-U- 'a- -a ~ ~ '.



-... I - -I -. -~~~ - - - - -

F ~ 12

aa Jt2 0 (B10)

4 1 CI C6 C2C52 A  3A - - lo +B3A 
--

2  2 2 
2 

AA2
all V D *-

C7  -2 c 4 3 h+ D- (log VB) + 2D2  (lgVB)

-t c 5 C6: -t + C6S 2  log V -B + 5 2C (B11)
2 2A2 5 

i D > 2C7C5
) + C7S2 (log B) 2 log B

4

C14S2  3C14C5 ~2 2
, +2 (log VB) 3 + (Aog 2 (log

[ a CBR all CBR

2C 2 FS-2c5S4 + 2c3c5s4  log BR_C3C5SV VB 2 2 (B12)

+ 3C4C5S 4  (log -B)2  6C4C5Vlog B1i2 4
5CBR2 52 CBR

B 4 - 2



I 2

IQD\J 4
SaESW all x ESWL

c~u2 2 JA

- 2C - 2C3C5S6  -og VB D2 E-s- 2  (B13)

3C4C5S6  
6(log B2 45 F 2

3CC T(lgVB )2 + 2 2 log VB 4a
D ESW-5 L2 J ESWL

where

C5 = log 10 e = 0.473429448
C 6 = 0.5C 2 + 2C3C5

C7 = 0.5C 3 + 3C4C5

4** +C 2 lgVB + C 3 (log y) C4 (log VB)3

VB = B

ESWL

C (C2 + 4C3C) - C2C5 C3 2
S1 -2' +  2log VB + + - (log VB)

C4  3 C4C5

+ (log B) (log

S2  .' 3 + 2S 1

C2C5  =A 2C3 C5  3C4C5 A2
S 3 _ log V+ - (log VB) 2

CBR CBR CBR

B5

Li N

..-..-. . .. € .. -.. -.- ,, - -, -. - . . ,<'



S S 3 /R
4 zB-R2 53  J

S __ -C 2 _ __2C3c log TB- ___C (log B)2
5 ES wL ESWL ESWL

-D +2S 5 ESWL)
~6 53 Es-wL 2

B
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